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I. INTRODUCTION 

Among the present day thermionic energy converters it appears that 

the cesium plasma cell is one of the most promising kind. However, by far 

its performance is considerably lower than the theoretically predicted 

values. One of the reasons to account for is the transport effects of the 

cesium plasma. 

The major types of transport effects are electron scattering and elec­

tron space charge. The effect of electron scattering attributing losses 

seems to be related to the resistivity of the cesium plasma. The effects 

of electron space charge are reduced or eliminated by positive ions, which 

are produced from the electrically supported ionization process. The lat­

ter is called ion generation losses. As a diagnosis tool, efforts were 

made trying to separate these losses. Typical work was the transient ex­

periment reported by Kaplan (l). 

Kaplan made a series of experiments in which potential or current 

pulses are applied to a cesium plasma diode. It was observed that the 

characteristics obtained are somewhat different than that of the steady 

state operation. This seems related to the transient response of the cesi­

um plasma. Therefore, the purpose of this dissertation is to review the 

theoretical analysis that may apply to the transient or non-linear proper­

ties of the cesium plasma cell. 

A. V-I Characteristics of the Diode 

The V-I curves of typical cesium diodes are shown in Figure 1. The 

dashed line represents idealized condition, in which the saturation cur­
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rent density j_s from the Richardson's equation: 

Js = 120 Ig2 exp (-^ ) (1) 

x-ihere and ̂  are emitter temperature and emitter work function, respec­

tively. tg is defined as in -which k is the Boltzmann 

constant and e is the electron charge. 

The retarding portion of this curve (i.e. ̂  + V Q) is the Boltz­

mann line, which is given by the emission equation: 

J0 =120  ̂("VJ - J1 C2) 

E 

•where JQ is the output current, VQ is the output voltage, V̂  denotes 

emitter barrier voltage (Figure 2a) and represents no-load ion current. 

The practical V-I curves are much lower than the ideal case. Further­

more, for higher loads the current density becomes double-valued known as 

the extinguished mode and the ignited mode. The ignited mode may be ob­

tained after biasing the diode with external sources. The above mentioned 

characteristics are well known in steady state operation (2a). In Kaplan's 

experiments the curve recorded after pulsed discharge is, for some part, in 

good agreement with the Boltzmann's line. 

Kaplan's curves may be called transient curves which are measured 

immediately after the pulsed discharge. As shown in Figure 1, the steady-

state curve differs from the transient curves by a potential difference 

V2, the voltage loss due to ion generation. At higher output current, the 

transient curve differs from the Boltzmann1s line by a potential difference 

V̂ , the voltage loss due to plasma resistance. Some calculations based on 
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these curves are given in Part III, and the curves are compiled in the 

Appendix. 

B. Potential diagrams in the diode space 

Figure 2 illustrates the simplified potential diagrams of a plasma 

diode. Figure 2a is operated at low current extinguished mode. It is 

characterized "by space charge limited in the diode space, and ions are gen­

erated "by surface ionization. is the barrier voltage that causes the 

low current capability. Figure 2b is the high current ignited mode. In 

this case, ions are produced by volume ionization, i.e. ionization by col­

lision. Thus V'1 and Vg are voltage losses due to ion generation and plas­

ma resistance, respectively. At low output currents, excess of ions may 

exist in the plasma and the potential is represented by the dashed curve. 

Figure 2c is the potential diagram after the pulsed discharge. In 

this case ions are generated by pulsing the diode with an external source 

thus Vg = 0. 

The theory and evidence of the foregoing phenomena which is closely-

related to the behavior of the cesium plasma, will be introduced in Part 

II. 
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II. Macroscopic Behavior of The Cesium Plasma 

Â. Plasma Sheaths 

For any hounded plasma there exists a sheath between the plasma and 

its confinement. The sheath serves as a barrier beyond "which electric 

neutrality is maintained on both sides. In general voltage gradient and 

temperature gradient exist in the sheath. In some operating conditions of 

a thermionic converter these gradients may be very high. Here we shall in­

vestigate the electrical properties of the sheath from a very simple pic­

ture (Figure 3). Consider the sheath near the envelope which would be 

electron rich since electrons having higher velocity tend to escape from 

the plasma. Thus, it has been shown by Spitzer (2b), that the sheath 

thickness is in the order of Debye shielding distance. 

1. Debye shielding distance 

Let us consider a two-dimension case where the electric field E is 

parallel to the x axis. To dérive the Debye shielding distance, we have 

from the one dimensional Poisson's equation 

a (3) 
dx o 

where V is the electrical potential, q is the electric charge and Gq denotes 

the permittivity of free space. 

Consider a certain region with electron density ng and ions may be 

neglected. Thus 

where e is the charge of electron. 
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If ¥ denotes the potential energy of an electron, equals to -eV, then 

the change of W across a slab of -width x is 

2 2 
-n e x 

Ù W  =  -  e V  =  — — : —  

-provided 

E  =  ~  = 0 a t x  =  0 .  
dx 

The Debye shielding distance h is the value of x for which the abso­

lute value of L\I equals to the mean kinetic energy per particle in 

one direction. Therefore 

h = 
e k T T 
-2__S = 6.90 -Ë. cm (5) 
ne v e 

•where lc is the Boltzmann constant, Tg the kinetic temperature of the elec­

trons in °K and n̂  the electron density in cm°. 

2. Emitter sheath 

The emitter sheath needed special attention in that it emitts elec­

trons thermionically. 

Let us choose a plane emitter at x = 0, and consider the region 

0 < x < h, 

We have, from equation (3) 

a®v _ e<Vni> 

S? C0 

vhere q = e (n. - ng), and is the ion density. 

The equation of motion for an electron in the x direction is 
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for x < h 

assume 
2eV 
m 

where v Is the electron velocity and. m is mass of the electron, 
e e 

The current density is given "by 

J = e (n± v± - ne vj 

Since v. < v , and n. < < n -when x < h 
l e i e 

i-7e have Jsi - q v 

or q % 
m e 
2eV 

Therefore dfy _ J 
2 e 

dx 

™e 

2 eV 

or 

•where Cl = r J 5E 

Multiply equation (9) "by 2 (—) 

dV\ fd̂ V\ _ ̂  Tr~| dV 

dx 
dx 

Integrating (̂ )2 = V2 + C, 

Since dV 
dx 

E(x) 

Let E(0) = 0 and V(0) = 0, then Cg = 0 
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Integrating again, we have 

{ 4/3 ) V̂ /4 = 2 C1 Xs 

where Xg is the sheath thickness and V_ is the sheath voltage. 

Finally by eliminating Ĉ , 

3/2 
X % = 4*o 
3 -9-

2e Vs 
m e 

or for the emitter sheath 

(V ̂  
XgE2 = 2.54 x 10"6 —̂  (10) 

This equation is an application of Child's Law (3), in which X̂  de­

notes the emitter sheath thickness in cm. V -, is the emitter sheath volt-
' sE 

2 
age in volts and Jg is the electron current density in amperes per cm . 

Since the sheath thickness is in the order of Dehye shielding dis­

tance, one can see from equation (10) that the emitter sheath voltage 

reaches its lowest value at open circuit ( = 0) and reaches its 

highest value near short circuit (ĵ %= Jg) conditions. Child's Law 

though simple and crude, gives the relation between the sheath thickness 

with its voltage and current. More detailed treatment by Taalat yields 

essentially the same conclusion (4). 

3. Collector sheath 

Similar argument in previous section is applied to the collector 

sheath. Consider an isolated collector with back emission current J, , 
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the collector sheath thickness is given by the equation 

Xj = 2.34 x 10"6 (Vs(P ̂  

Jeb 

Since 

feb 
Jio 

5T (ID 
e 

as based on Langmiur's theory (5), where a, = 492 is the square root 
i/me 

of mass of a cesium ion to mass of an electron; and J_.q is the no load ion 

current at the collector sheath 

\3/2 

Thus XsC2 = 2.34 x 10"6 

V 

me (\c)' 

mi Jio 

2 9 (V̂ )S/g 
or X _ = 4.76 x 10 J. (12) 

sC îo x ' 

During the diode operation, the collector sheath voltage reaches its high­

est value at open circuit (J. = J ) and its lowest value near short cir-
IO eo 

cuited conditions . 

Figure 3 depicts the sheath voltages and currents of a diode carrying 

external loads. As mentioned previously, the potential at the edge of the 

plasma is positive with respect to that of both the emitter and the collec­

tor. Double sheaths are formed on the emitter surface due to the therm­

ionic emission. 

B. Plasma resistance 

The plasma in a thermionic energy converter can be classified as low 

temperature or low energy ionized gas. The electrical conductivity of 

such an ionized gas was calculated by Cohen et al (6), in which two-body 
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interactions are considered among the ion-electron and electron-electron 

encounters. This is so called Coulombic scattering = The formation of the 

equations for calculation is given as below: 

1, The Coulombic scattering 

The velocity distribution function f̂  (x, v, t) of type r, interact­

ing with particles of different types s, is given by Boltzmann's equation: 

a/ + ^i \»i ax. ^ri 5c- = Zg (is) 
ri 

where v ̂  is the component of velocity vector of an r-th particle in direc­

tion i. x. is the component of TOsition vector in direction i and F . is 7 i - ri 

force per unit mass on ̂ article of type r. f denotes the change 
i at ;s 

in f produced by encounters of r particles with particles of type s„ 

The right hand side of equation (15) is evaluated for inverse-square 

forces. 

(Vr/at)g = - J (fyfg) - K (fyfj (14) 

where J (f̂ f̂ ) is the close encounter function (5) defined as 

b 

r s 

2TT R 

J(frfs> = y =0 
Y S 

€ = 0 /= 0
(frfs-fr'fs'J BMbdedTs (15) 

in which f̂ , is the velocity distribution function after collision, g = 

vr - v the relative velocity of the two types of particle before en­

counter, b is the impact parameter, s is the angle between the orbital 

plane and the plane containing the velocities of the two particles before 
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encounter; and b represents the critical impact parameter. 

K (f f ) is the distant encounter function defined as x r s 

K(f/S) dVi (fr< A Tî 3 >) 2 Bv. dv. " r 
i i J 

(f < A v. A v. >) 
v •" i>s j,s 

(16) 

where, in general, for any quantity x. 

CCO 
<x > = gf dv 

2rr 

u Vs=0 

de 
V e=0 J 

b 
m 

b=b 
xbdb (17) 

in which b̂  is the cut-off impact parameter. The higher ordered terms of 

IC (ff ) in equation (16) arc neglected. To solve for f̂ , one would sub­

stitute equations (14), (15) and (16) into (l). It is a matter of com­

plexity to solve these equations. Here we shall give some important steps 

that would lead to the equation for evaluating the conductivity. 

According to Chapman and Cowling (7), let 

f = f (°) + f (l) 
r r r 

(18) 

where f_̂ 0̂  is the Maxwellian velocity distribution function. In equa­

tion (l), for a plasma in steady state with an electric field E and temper­

ature gradient V T, it can be shown that 

2 
(0) m v 

r r 
2kT I Vri ST 

- f (0) fr 
kT 

S K(f (1) f (°)) + E K(f (°)f (1)) (19) 

where Zr equals to -1 for electrons. When equation (19) is applied to an 
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electron gas, we shall omit all subscripts from quantities referring to 

electrons, such as f̂ \ m and v. 

For a more simple case, let V T = 0 and define 

I2 = m/2kT 

Thus (2 0,2 ef(°)/m) S. E.v. + S K (f̂  f v  v  '  '  1 1 1  s  s  

+ S K (f(°) f (1)) = 0 (20) 

The value of f̂  and f(̂  may be represented in spherical coordinates. 

f(̂ ") (v) = f(̂  D (jLv) cos 6 (21) 

where D is the diffusion function, 9 is the angle between E and v, and 

f(̂ ) is the Maxwellian distribution function, given by the equation 

f(°) (v) = (ne j2/5/n °/2) exp (- !?v2) (22) 

Thus, for an electron-proton gas equation (20) becomes 

(2 I2 ef(0)/m) E v cos 0 + K (ff ) + K (ff) = 0 (23) 

where K (ff_̂ ) may "be evaluated from equations (16) and (21), after trans­

formed to spherical coordinates, we have, 

(°) -n ( Q]/CHr3 (24) 

in which 

K(ffp) = [3Lf D ( £/v) cos 6]/2v' 

L = (8 TT e" nê 3m2) In (h/bQ) 
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•where h is the Debye shielding distance and bQ is the impact parameter 

corresponding to 90° deflection, h and b are the upper and lower limits, 

respectively, in evaluating <x > in equation (j.,7). They are given by the 

equation 

where Ẑ  is the charge of the ion. 

Substituting equation (24) into equation (23), one finds the relation be­

tween D(fi,v) and E is given by: 

(2&2 ef̂ /̂m) Ev cos 6 + (SLf̂  ̂D (ilv) cos 9)/2v° + IC(ff) = 0 

(26) 

Multiply equation (2 6) by|2rrv cos 9 sin 9 dv d9̂ and integrate over all 9 

and vj letting x = SLv, and define 

T
n (ro) =| y" D(y) exp(-y2) dy (27) 

Thus IQ (») = J D(x) exp(-x2) dx = 

Where A 
2TT I e Q ln( h/b ) (28) 

The integration of K(ff) in equation (26) dropped out since the electron-

electron intractions can not change the total momentum of the electrons. 

Finally, the conductivity is given by the equation 
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a = 
v=0 ' 0=0 f Lo ~f(Y) 1 C°S 8  ̂̂ « « 0* * 

(29) 

Substitute equations (18), (21) and (22) into equation (29) and integrat­

ing, the term vanishes because of spherical symmetry. 

( 03 
Thus CT = 

J v=0 ; 

2rr / n (0) 
fx (v) D(lv) v e cos 6 d(cos 9) d0 dv 

0=0 j 9=0 E 

= - . 2rT 
ng e 3v° D(dv) exp(-jL2v2) d(Hv) 

$Lv=0 TT
0//2 E5, 

4rren 
e 

3E.fi, 
3 2 
y D(y) exp(-y ) dy 

y=o 

4rren 

"3ËT" 3̂ 
(30) 

where (œ) is defined by equation (27). 

Combining equations (28) and (30), we have 

2m X, (®) 
c = 

3l2ê rr3/'2A ln(h/b ) 

For Lorentz gas, a fully ionized gas in which the electrons do not inter­

act with each other and the ions are at rest, 
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i3 (-) 

A 

Let  ̂= 13 (-> 

3A 

a = W/W0) 

For singly charged ions Y = 0.58 (2), therefore, the final equation of re­

sistivity is given by 

tt°/2 eF e2 ln(h/bQ) 

P 2(0.58) (2kT)3//2 

= 6.53 x 103 ohm-cm (31) 
Ti/2 

where A. - h/b 

Equation (31) is the Spitzer-Harm formula for resistivity of plasma. It is 

•well accepted in the field of plasma physics for a weekly external field E 

and at temperature T not too high. These conditions apply to the cesium 

plasm inside a thermionic energy converter. However, one should realize 

that the temperature gradient V T which was omitted in equation (20) does 

exist in an energy converter, and the temperature T in equation (31) is the 

mean kinetic temperature of the electrons in the plasma. 
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2. The electron-neutral scattering 

The contribution of the collisions between electrons and neutrals 

would highly depend on the external sources, since there is no interaction 

force between electrons and neutrals. Furthermore, one would suspect that 

there -would be a collision cross section involved in the process. In the 

following derivation, we shall adopt the Robinson's model (8), that in a 

homogeneous plasma there is an external field E(t) in the x direction. 

Again, we may write Boltzmann's equation 

+ eE(t) Be (ve.t) = sLsi-2.) (52) 
Bt m ôv c e ex 

when collisions between electrons and neutral atoms are the only type of 

importance, the right hand side of equation (32) becomes 

a t ,  -  K  
t ) Bt /c 

v =0 
e 

g dQ .[f^-f^] d v^ (33) 

Q=0 

where the subscript e denotes electrons and o denotes neutrals, (from now 

on we shall drop the e's for the electrons), f, f', g and v are defined as 

in equation (15). note that equation (33) is written in closed form as 

distant encounters are neglected. dQ is the scattering cross section de­

fined by 

dQ = l(v,%) an 

where dfi = sin xdxde in which % is the deflection angle and e is the polar 

angle. I (v/jQ is the differential cross-section given by the equation 
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iM) = ̂  S (2IL + 1) [exp (2 6, ) -l] P (coŝ /)\ 
>0 J P 1 J 

where ̂  = inv/h, 6̂  is the 1-th order phase shift and P_ (cos%/) is the Jt-th 

order Legendre's polynomial. 

After some simplifications, equation (32) is reduced to 

W~ + Ho ff Tx 'V v> iT = (34) 
•J e 

where < v̂ > is the average speed of electrons defined by 

< v > = 
x J 

f(v,t) Vv dv 

2 
Nq is the number of neutral particles per cm and Q̂ (v) is the momen­

tum transfer cross-section. In most cases, Q̂ (v) OL l/v i.e. the momentum 

transfer function is proportional to the inverse of the relative speed be­

tween the two particles. Thus one finds equation (32) in a very familiar 

form 

•„<,>, («) 
e 

•where p is the collision frequency defined "by 

V = \ Ko  ̂

Let be the plasma resistivity resulting from electron-neutral colli­

sions, and since 
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Jn - E/pn 

and J = n e < v. > (37) 
ne lx x ' 

Assuming E(t) = exp (jwt) 

E exp(jwt) 
tHen <v> = — ^ (38) 

Therefore, at low frequencies 

n jl 

K '  (39) 
n e 
e 

N m 
or p = — (-0) 

nee 

where represents the average collision frequency per neutral atom and 

is given "by 

3 f TT 

(Il = 2n 
v=0 

f(v) vl(v,Xz) (1 - coŝ ) Sin̂ d-̂ d v 
x=0 

where p = For f (v) in Maxwell-Boltzmann distribution, the values 

of y, have been calculated by Robinson and others (8). It was shown de­

pends weakly on temperature. At high temperature, p, approaches to 

10 x 10-7 cm3 sec-1 and_ — ̂ ,9 x 10*"7 cm3 sec"1 for the range of thermionic 

energy converters ( 2000°k)« 

Defining the fractional of ionization f^ = n^^ + equation 

(40) can be "written as 
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, _ 1-f 
Pn = 3.57 x 1CT y, (~~) (41) 

s 

•where f may be obtained from Nottingham's theory on fractional ioniza­

tion (9) 

—6 
1.9 x 10 

V_. 
Tcs eBrfcr> 

e 

e 

in which is cesium first ionization potential and equals 3.87 volts, 

t is the electron temperature in equivalent volts, i.e. t = T /ll,610 

volts as defined previously. 

The fractional ionization can also be obtained by using a Langmuir 

probe to measure the electron density in the plasma. 

It was reported by Firle (10) and Laubenstein et al. (ll), that the 

current decay time after a pulsed discharge is in the order of 100 micro­

seconds. In addition, their results indicate that the decay time is not 

sensitive to electrode spacing, cesium pressure and other parameters. 

This phenomenon can be described by attributing the property of induct­

ances to the plasma. On the other hand, plasma oscillations are well 

known at high frequencies. It follows that the electric circuit and elec­

tromagnetic field analogy may be applied to the plasma at lower frequen­

cies and higher frequencies, respectively. The concept of plasma react­

ance is treated in the following two sections. 

C. Plasma reactance 



www.manaraa.com

22 

1. Low frequency inductive reactance 

Referring to equation (35), one can substitute < v > with and ob­

tain the following equation 

d j  n e 2  E ( t )  

dF" + = 6 m ' (42) 

where is the current density attributing to electron-neutral scattering. 

|x(t) represents the collision frequency which in general is time dependent 

as can be seen from the defining equation 

p(t) = UQ(t) vQ̂ j (v) f(v,t) dv (43) 

In lAich the density of neutral cesium atoms Uq(t) is time dependent dur­

ing the discharge and the velocity distribution function f(v,t) would 

naturally depend on time during the transient process. However, for the 

sake of simplicity, we shall assume that - they would stay at their initial 

values during the current decay or the current build up process. 

Thus the time constant is given by 

(44)  

where = 9 x 10™7 cm5/sec for the temperature range of interest. 

As mentioned previously, the measured current "decay" time constant 

after a pulsed discharge is approximately 100 microseconds, so let 

T = 100 x 10"S second and check if other conditions are satisfied. From 

equation (44) the number of neutral cesium atoms per cm is 
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M = ' ,—̂  7 = —— = 1.11 x 10"'" neutrals/ 3 
0 10 x 9 x 10 3 cm 

For cesiuia vapor pressure P = 0.2 mm ES, cesium temperature 

o 15 
Tgg = 300 G, the corresponding gas molecule density II = 2.76 x 10 

molecules/ 3 
' cm 

Thus the fraction of ionization 

îl r 
f  = l - - 2  =  i -  4 x  10 ~ b ^  1  
s IN 

S 

which means the gas is fully ionized. 

During the positive pulse is applied to the diode, the current build 

up is much faster then that of the decay. This is because of low frac­

tional ionization at the extinguished mode. Typical "rising" time con­

stant may be calculated very briefly: For cesium pressure P = 0.2 mm Ĥ , 

T„ = 300° C H II = 2.76 x 10̂  neutrals/ 3 
Cs o g cm 

1 1  - g  Thus T = ' ' - = =n= = 4 x 10 sec 
2.76 x 10 x 9 x 10 

In the case when a positive pulse is applied to a diode already at ignited 

mode (Fully ionized), p,(t) would depend strongly on E(t) in equation (42) 

and the situation is better dipited by Coulombic scattering in section 

II - B - 1. 

The above discussion is based on the assumption that the current de­

cay is exclusively due to electron-neutral collisions. Similar argument 
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may "be applied to the charge exchange collision in which cesium ions 

collide with cesium atoms » Sheldon (12) calculated the average momentum-

exchange cross-section for charge exchange collisions Qcg = 5.0 x 10 ̂  cm̂  

at cesium temperature of 500°K, as compared to = 5.0 x 10""̂  cnf for 

electron-neutral collisions at the same temperature (8). Accordingly, one 

can compute the charge exchange collision frequency from equation (45). 

Realizing that the average cesium ion speed is approximately l/492 that of 

the electrons and assuming the cesium ions have the same distribution func­

tion as the electrons, we have obviously, 

11 = 7 * 10 x 2 x 10 = 5.7 x lo"9 cm3/sec at 300°K 
ce 492 X 5 x 10"14 

2. High frequency capacitive reactance 

When a high frequency e.m.f. is applied to a cesium plasma thermionic 

diode, the latter reacts more like a perturbed resonant cavity. In 

effect, the diode can support several different kinds of oscillations 

corresponding to different modes of operation in resonant cavities (15). 

Shure (14) has treated the plasma oscillation as boundary value problems 

and derived an equation for the plasma capacitor. His simplified and 

generalized analysis though may not apply to the cesium diode in some re­

spects, but it does give the insight as to the problems involved. Thus we 

shall begin with the assumptions and hopefully conclude to a useful result. 

The starting point is the Vlasov "collisionless" Boltzmann equation 

and the Poisson equation. We shall consider a plasma-filled parallel 

plate capacitor as shown in Figure 4. An e.m.f. of frequency co is imposed 

upon the electrodes. The coupled one-dimensional Vlasov and Poisson 
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equations are 

I t  + T | | =  " T  ^ 4  (44) 

— E(x,t) = 4rre 1 fdv (45) 
*"* ' -00 

Tlie Vlasov equation has been linearized about its equilibrium solution 

^ (x,v,t) = n£ F(v) + f(x,v,t) (46) 

where F(v) is the Maxwellian distribution function at temperature Q/k. 

Tlie variables x, v, t nay be replaced with the following non-dimensional 

parameters 

x' = ~ v' = r~- t' = to) (47 ) 
h hu) p x ' 

p 

where li-is the Debye shielding distance and tu is the plasma frequency 

given by the equations 

2 
c! 4JTne€ 

2 "P " — 
H2 = -2-3 » 2 , (48) 

4nn e 
e 

In addition, the frequency of the impressed field is in terms of cu such 

that 

oj1 = w/u)p 

Substitute these new variables in equations (44) and (45) and subsequently 
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drop all the primes 

s § + * t § - £  
(50) 

BE 
55 

= 4TT f(v,t) dv (51) 

F(v) = f= exp (-T / ) 
J 2rr 

(52) 

We shall assmae the system has time dependence exp (-jut), i.e. 

E(t) = E exp(-jmt). 

The coupled equations may be represented by a single matrix equation 

1 dp. 
v 0 

0 1 Bx E 

J" 

4TT 
CO 

4tt dv 

o J U (53) 

or symbolically, 

B ty 
p T5E 

= H V 

where i]i is the "state vector" 

H: 

(54) 

(55) 

The solutions of the integro-differeniial matrix equation depend on the 

eigen values of the characteristic function as well as the boundary con­

ditions imposed. For our purpose w < 1 is the range of interest, this 

narrows down to the solutions of the so called discrete normal modes: 

iJr = ̂  exp(jtox/)):L) (56) 



www.manaraa.com

28 

=V (58) 

The eigen values 9 . are the zeros of the characteristic function 
i 

f CO 
i)2 

A ( V ) = 1 - %r dT (59) 

A. (\)) is analytic in the complex V-plane cut along the entire real axis, 

and tends to a constant value for large | ̂)| 

A M = 1 - ~~2 (60) 
m 

For Maxwellian F(v) and in the range to < 1, it may be shown that there are 

tiro discrete roots: £ j 90 with V Q real and positive. The value 

of Q is show in Figure 5. As shown in the figure the ordinate 

indicates the sheath thickness. VJhen m -> 0 the sheath thickness equals 

the Debye shielding distance and as w -> 1 the sheath thickness increases 

rapidly. VJhen m = 1 the plasma is in oscillation so effectively the diode 

will draw saturation current (15) * This agrees very well to the discus­

sion in section II-A-1 on the emitter and collector sheaths. 

To find the capacitance of the plasma, the electric field E(x) may be 

evaluated using the boundary condition 

f(v, tL/p) = f(-v, ± L/p) (61) 
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and E(|) = - E(-L/2) 

The detailed derivation is omitted and finally for uo < 3/4 

(62) 

E(x) ̂E(-h) I 1 - cosh 15L-J cosh f 0) L (63) 

The impedance Z of the capacitor is found from Ohm's law 

ZJ = 
Vo 

-LÀ 
E(X) dx (64) 

Substitute equation (63) in equation (64) and integrate 

ZJ = E(|) 1 _ Ê tank M L 
(65) 

Since J is the displacement current of the capacitor 

i - «I) (66) 

A is the area of the plates 

Thus , n 
Z = 

J to C 'eff 
(67) 

Where C = A 
O 4 TT L 

(68) 

the capacitance of the condenser without the plasma, and the effective 

permittivity of the plasma is given by 
U) L 

tarih 

Seff = 1 " UD L 

Vo 2 

(69) 
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Hence the capacitance of a plasma condenser varies as the applied frequency 

id. Its value depends on the sheath thickness )) / and thus in turn depend­
ed) 

ing on the electron density ng. 

Furthermore, since (tanh x)/x approaches to unity when x is small, 

and approaches to zero when x is large, the effective permittivity eeff 

in equation (69) increases and approaches to 1, the permittivity of free 

space, as the spacing L increases. This is contradictory to conventional 

capacitors. However, the explanation stands "by itself in that shorter 

spacing allows higher frequency oscillations supported by lower capacitance 

which is in fact experimentally proved by Rocard (16) for a low pressure 

plasma diode. 
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III. INTERPRETATION OF EXPERIMENTAL EVIDENCE 

The theories developed in Part II are applied here to explain some 

experimental evidence reported elsewhere. in particular, some numerical 

results from Kaplan's transient experiments (l) is further calculated and 

his curves are compiled in the Appendix. 

A. Experimental technique 

The circuitry for transient measurements needed special attention in 

that stray pick up may highly effect the results. Coaxial cables can be 

used to reduce the circuit inductance. The external source to be applied 

to the diode should be carefully programmed and with negligible source 

impedance. The source that Kaplan used produces single pulses in the 

microsecond range with a current capability of 300 amperes. The switch­

ing circuit and its precise timing is of paramount importance. In the 

case alternating pulses are used, the linearity of coupling devices such 

as transformers must be concerned. 

As for the diode converter itself, it is better to have parallel 

plate electrodes with adjustable spacing. A pot-window is necessary to 

view the discharge. The ultimate goal is to install Langmuir's probe that 

would reveal more precious information in the interelectrode space. 

B. Calculations 

1. Debye shielding distance 

From equation (5), assume Tg = 1573°K and ng = 4 x 10"̂  electrons/cm3 
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h = 
«o % 1.38 x l(f16 T 

e 

4jt x 4.8 x 10~10n 

= 6.9 
T. 

n 

1.37 x 10 4 cm. 

2. Collector sheath thickness at no load 

Applying equation (12) and using the data from Figure 14, the collec­

tor sheath thickness at no load may be found. The no load, ion current is 

as illustrated in Figure 1, thus J\q = 0.056 amp/cm . The collector 

sheath voltage is approximated by the potential difference between the 

transient curve and the Boltzmann's line, i.e. Vgc = 0.22 volts. Substi­

tuting in equation (12) 

(Xso)2 = 4.76 X 1°"9 

3/2 

-4 
therefore, X = 0.94 x 10 cm 

sc 

3. Emitter sheath voltage at near saturated current 

From the result of equation (10), we shall assume the sheath thick­

ness equals the Debyë shielding distance, i.e. Xgj, = 1.4 x 10 * cm 

2 Assume J = 20 amp/cm 

-,.2 
Thus (1.4 x 10~V = 2.34 x 10"6 

3/2 

Therefore, = 0.31 volt 
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Similarly, the emitter sheath voltage is found to "be 0.4 volt at an out­

put current of 30 amperes. The voltage loss due to emitter sheath drop is 

appreciable at near-saturation current, and the diode is operated in the 

space charge limited region. 

4. Plasma resistivity 

From equation (31), 

p = 6.53 x 105 

>3 £ 
•where JX = 1.24 x 10̂  (-—) 

ohm-cm 

i 

e 

Here the electron temperature is approximated by the emitter temperature, 

and the electron density is estimated by the equation 

"e - r (7°) 
Xi 

The values based on Kaplan's experiments (l) are computed as follows: 

For J =10 amp/ 2 and TL = 1573°K. n = 4 x 1012 electrons/ 3 
o cm T2 e cm 

and In A = 6.0 

Thus p = 0.60 ohm-cm for Tg = 1350°C 

and p = 0.66 ohm-cm for Tg - 1250°C 

The above calculated resistivity is checked against the measured resistiv­

ity, which is given by the equation 

p = VU0s) (71) 
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•where S is the spacing between the emitter and the collector, J is the 

output current and V̂  is the voltage loss due to plasma resistance (See 

Figure l). 

A plot of measured resistivity versus output current density is shown 

in Figure 6, for which the data are based on the transient curves in Fig­

ures 7 to 14 of the Appendix. The plot shows that the resistivity in­

creases with higher cesium pressure but decreases with higher emitter 

temperature or higher current density. The higher resistivity at higher 

cesium pressures may be attributed to the electron-neutral scattering. 

The resistivity is inversely proportional to the emitter temperature as 

readily can be seen from equation (31). The dependence of resistivity on 

current, however, is uncertain due to a correction factor involved in the 

experiment*. It may be further noted that the current density plotted in 

Figure 6 is in the range of 5 to 15 amperes per sq. cm, at which the trans­

port effect starts to play. For higher current near to saturation, the 

emitter sheath voltage should be considered in determining the voltage 

drop due to plasma resistance V̂ . 

5. Plasma inductance 

The inductance of a plasma may be found from the relation T = l/^ 

where T is given by equation (44). Thus for p = 0.66 ohm-cm, the emitter 

2 or collector area A = 4.6 cm and the emitter and collector spacing 

S -3 
S = 0.038 cm we have R = p — = 5.45 x 10 ohm 

*Kaplan, Cole, Marquardt Corporation, Van Nuys, California. 
Experimental Techniques. Private communication. 1964. 
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-4 
Since T = 10 sec 

Hence L = 5.45 x 10 3 x 10 ̂  = 5.45 x 10 ̂  henry 

This gives the order of magnitude of plasm inductance on the basis of 

electron-neutral scattering. 

6. Plasma capacitance 

Using the foregoing dimensions, the capacitance without plasma is ob­

tained from equations (68) and (69): 

co sTH= 4 n (ô!(Bè) * " 10 "7 * 10"12 farad 

tanh 

The effective permittivity = 1 —  ̂

% ̂  

Assuming = ^60 

(tanh )̂/  ̂
o zo 

Hence e
eff = 1 " ïsgô ̂  1 

Thus the plasma capacitance is equal to the electrode capacitance without 

plasma for the frequencies below the Langmuir frequency. 

C. Discussion 

It is well known that the dynamic behavior of ionized gases is a very 

complex problem. So far work has been done on simplified assumptions such 

as equilibrium state, linearized variations and other negligible effects. 
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In applying these yet veil established theorems to engineering problems 

one "would trace back to every initial assumptions. Tlie Spitzer-IIarm (2b) 

treatment of plasr/ia resistivity employs statistical methods for a ionized 

gas at equilibrium state with no temperature gradient. This method seems 

still applicable to thermionic energy converters during the transient pro­

cess for that the plasma is at low temperature, low energy and less turbu­

lent 'han that of other kinds of applications. Furthermore, the cesium, 

plasma behaves quite close to a Lorentz gas (6) in that the weight of ce-

sium ions is 2.418 x 10 times than that of the electrons. This also im­

plies the assumption that the distribution function of cesium ions is 

essentially unperturbed during the process. 

In the process of deriving the plasma resistance, inductance and ca­

pacitance we decoupled some related effects. Symmetrical and hypothetical 

boundary conditions are used in the capacitance calculation in order to 

get a usable solution. These are certainly not fully justified, however, 

have been general feasible technique. The evaluated parameters were 

checked fairly well, against obtainable experimental data. 

In computing the plasma resistivity from equation (31), the electron 

temperature was approximated by the emitter temperature. The latter in 

reality represents the electron temperature at the emitter sheath. How­

ever, the emitter sheath "was eliminated immediately after the pulsed dis­

charge, thus the mean electron temperature of the plasma may be represented 

by the emitter temperature. The ideal method would be to insert a Lang-

muir probe to determine the electron temperature, but the spacings of prac­

tical diodes are so short that the probe would highly distort the electric 

field. It might also lead to the perturbations of other parameters. The 
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calculated plasm resistivity as compared to that of the measured agree 

within a factor of 2 (See Figure 6). The deviations are attributed to 

the scattering of neutralso In general the results are reasonable for 

the present state of the art. 

The foregoing mentioned plasma resistivity are basically at the 

equilibrium state. -To investigate its transient properties one would also 

try to evaluate the dynamic resistance of the diode from its V-I charac­

teristics. Under certain operating conditions, such as the ignited mode 

shorn in Figures 8 and 12 of the Appendix, the dynamic resistance of the 

diode seemed to be zero. Furthermore, these regions are characterized 

by having ion-rich plasma in the interelectrode space » As a result, the 

diode tends to support low frequency instabilities caused by ion oscilla­

tions (15). 

The resistance, inductance and capacitance of the plasma as evaluated 

are lunrped parameters and analogous to a simple electric circuit. It 

appears that the R-L-C parallel circuit may best describe the plasma model 

since these parameters were derived independently. The other possibility 

is the R-L series branch in parallel with the capacitance. The frequen­

cies of oscillation obtained in both cases are the same since the plasma 

resistance is rather low. The oscillation of the electron current in the 

resonant circuit simulates the electron oscillation in the plasma at high 

frequencies. 

A numerical illustration is in order. First, we note that the plasma 

frequency or so called Langmuir frequency is given by equation (43). For 

12 3 
an electron density ng of 4 x 10 per cm , the plasma frequency f is 
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1.8 x 10"̂  cycles per second. Referring to section II-B, the plasma R, L 

and C values are 5.45 x 10 3 ohm, 5.45 x 10 ̂  henry and 10.7 x 10 ̂  farad, 

respectively, for which the resonant frequency f of the circuit is 6.S x 

7 
10 cycles per second. The deviation is mainly due to the approximations 

made in computing the plasma capacitance. The sheath thickness to/V» at 

high frequencies is comparable to the electrode spacing L, thus the effec­

tive permittivity e ̂  in equation (69) will be reduced. This in turn 

yields a smaller capacitor. In addition, the solution is valid only when 

a) < 5/4, i.e. when the applied frequency is less than 0/4 of the plasma 

•frequency. For w approaching 1, it may be shown (14) that the effective 

permittivity is approximated by 

Geff = 1 " ~ 
to 

In effect, the plasma capacitance is highly sensitive to the frequency 

when w -» 1, and becomes a blockade capacitor as 0: = 1 (Z£ —» 03). This 

interpretation suggests that the resonant frequency should be slightly 

lower than the plasma frequency œ̂ , which agrees to the model of dissipa-

tive parallel circuits. • 

The plasma reactance was determined from the decay constant reported 

in two experiments (10, 11). The order of magnitude seemed to be correct 

and no other quantitative prediction of this parameter has been reported. 

The area for possible future research would be to reconsider some 

effects neglected in this dissertation. The transition between the ex­

tinguished mode and the ignited mode may be investigated. This is cer­

tainly a physics problem but the plasma inductance and capacitance might 

play a role in this resonant phenomenon. As to the experimental work, 
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there is a great deal that might he done. The information and experience 

in this area is urgently needed for the future large-scale direct-energy 

conversion. 
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VI. AEEEHDH 

.The steady-state and transient curves from Reference 1 are shovm in 

Figures 7 to 14. 
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IRIDIUM EMITTER AND 
STAINLESS-STEEL COLLECTOR 
EMITTER TEMPERATURE= 1250°C 
COLLECTOR TEMPERATURE = 705°C 
CESIUM PRESSURE =3.8 torr 
ELECTRODE SPACING = 0.38 mm 

= MAXIMUM POWER DENSITY 
Js = SATURATION CURRENT DENSITY 
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0 = 1.85eV 

AFTER 
PULSED 
DISCHARGE 

1.67 W/cm! 
0.83 W/cm? 

STEADY-STATE 
(IGNITED MODE) 

STEADY-STATE 
(EXTINGUISHED MODE) 

0.01 

1.5 2.0  

FIGURE 12. EXPERIMENTAL V-I CURVES 
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IRIDIUM EMITTER AND 
STAINLESS-STEEL COLLECTOR 
EMITTER TEMPERATURE = 1350°C 
COLLECTOR TEMPERATURE= 735°C 
CESIUM PRESSURE = 3.8 torr 
ELECTRODE SPACING = 0.38 mm 

® = MAXIMUM POWER DENSITY 
Js = SATURATION CURRENT DENSfTY 

Q= 1.87eV 

AFTER 
PULSED 
DISCHARGE 

2.32 W/cm2-
3.13 W/cm^ 

STEADY-STATE 
(IGNITED MODE) 

STEADY-STATE 
(EXTINGUISHED MODE) 

0.01 
•0.5 0 0.5 1.0 1.5 

FIGURE 13. EXPERIMENTAL V-I CURVES 
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FIGURE 14. EXPERIMENTAL V-I CURVES 

1.82 eV 

IRIDIUM EMITTER AND 
STAINLESS-STEEL COLLECTOR-
EMITTER TEMPERATURE=1350°C 
COLLECTOR TEMPERATURE= 740°C 
CESIUM PRESSURE = 1.6 torr 
ELECTRODE SPACING = 0.25 mm 

@ = MAXIMUM POWER DENSITY 
Js= SATURATION CURRENT DENSITY 

AFTER 
PULSED 
DISCHARGE 

3.50 W/cm 
2.54 W/cm' 

STEADY-STATE 
(IGNITED MODE) 

_ .u-ADY-STATE 
(EXTINGUISHED MODE) 
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